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“Multifunctional composites for autonomic,
adaptive and self-sustaining systems”.
Engineering nonreciprocal wave dispersion
in a nonlocal micropolar metabeam

Qian Wu1, P Shivashankar1, Xianchen Xu1, Yangyang Chen2 and Guoliang Huang1

Abstract
Active metamaterials with electronic control schemes can exhibit nonreciprocal and/or complex elastic coefficients that
result in non-Hermitian wave phenomena. Here, we investigate theoretically and experimentally a non-Hermitian mi-
cropolar metabeam with piezoelectric elements and electronic nonlocal feed-forward control. Since the nonlocal feed-
forward control breaks spatial reciprocity, the proposed metabeam supports nonreciprocal flexural wave propagation,
featuring unidirectional amplification/attenuation and non-Hermitian skin effect. Theoretical homogenization modeling is
developed to consider the nonlocal effect into an effective complex bending stiffness. The unidirectional wave amplification/
attenuation is attributed to the energy conversion between electrical power and mechanical work. The non-Hermitian skin
effect, characterized by a winding number, is the manifestation of the flexural nonreciprocity and admits an extensive
number of localized bulk eigenmodes on open boundaries. The nonlocal metabeam is also employed to engineer the
anomalous wave dispersion such as tunable roton-like dispersion and band tilting. The nonlocal micropolar metabeam
could pave the ways for designing non-Hermitian topological mechanical metamaterials featuring programmable non-
reciprocal wave transmission and engineering roton-like wave dispersion relations under ambient environments.
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Introduction

Metamaterial refers to a type of artificial periodic structures,
which comprises subwavelength building blocks.1 In the
past decade, mechanical metamaterials have been investi-
gated to support emergent wave physics and applications
that are not accessible in nature, such as negative refrac-
tion,2 nonreciprocal wave propagation,3–6 cloaking7 and so
forth. One of the most primary goals of metamaterial design
is to create wave-bearing and/or topological devices to
manipulate elastic and acoustic waves such as topological
wave propagation and mechanical interfacial waveguiding
by using engineered microstructures.8–12 However, passive
metamaterials or metastructures cannot fulfill many novel
functions as practical devices because of their lack of
tunability or adaptive properties. To overcome this limita-
tion, active and/or programmable mechanical metamaterials
composed of energy-generating microstructures with
feedback control become a promising platform to create
adaptive functional and topological materials.13–15 On the
other hand, the active metamaterials are also non-Hermitian

systems which contain non-conservative forces that require
an internal or external source of energy to be present.

Recently, many efforts on active metamaterials have
been devoted towards the exploration of unconventional
static and dynamic behavior due to non-Hermiticity, most of
which focus on parity-time-reversal (PT) phase transitions
and exceptional points.14,16,17 The active spring with
feedback control has been pursued to establish nonrecip-
rocal interactions in a mechanical lattice that emulates
the non-Hermitian SuSchriefferHeeger (SSH) model.18

To physically realize those active springs, a 1D robotic
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metamaterial including a combination of local sensing,
computation, communication, and actuation was suggested
to break reciprocity at the level of the local interactions
between the building blocks themselves.19 Zero-frequency
edge states in the non-Hermitian topological phase and
unidirectional wave amplification were demonstrated. In
contrast to the ordinary topological band theory, non-
Hermitian mechanical systems exhibit unique features
such as band structure sensitive to boundary conditions. By
introducing active springs coupled with other local defor-
mations, non-Hermiticity of the active interaction enters the
linear elasticity of a continuum solid through odd elastic
moduli, which are active moduli that violate Maxwell-Betti
reciprocity.20 The odd elastic moduli when combined with
anisotropy can give rise to the non-Hermitian skin effect.21

Nonetheless, the aforementioned active systems exhibit
either of the following fundamental limitations: the active
nonreciprocal effects either vanish from the linear response
in the quasistatic limit or they require the presence of back-
ground sources of linear or angular momentum.15,19,22,23 The
nonlinearity is another attempt in achieving wave non-
reciprocity through the generation of higher-order harmonics.24

However, it is worth stressing that nonlinearity-based nonre-
ciprocal systems also hold a few fundamental limitations: First,
a passive nonreciprocal device can support drastically different
transmissions for oppositely propagating waves, but it cannot
ensure isolation when the system is excited simultaneously
from both sides. In addition, there is a trade-off between the
degree of nonreciprocity achievable in passive, nonlinear
resonators, and the wave magnitude of forward transmission.4

To remove these obstacles, a freestanding active metabeam
with piezoelectric elements and electronic feed-forward control
was recently developed that gives rise to an odd micropolar
elasticity. In addition, inspired by those active metamaterials
with local feedback interaction, 1D and 2D elastic lattices with
nonlocal feedback interactions were explored to demonstrate a
series of unconventional phenomena stemming from their non-
Hermiticity.22 However, little to no work has been successful in
physically realizing active metamaterials with nonlocal feed-
back or feed-forward control in a continuum level.

Here, we report the design, construction, and experimental
demonstration of a freestanding active metamaterial with
nonlocal feed-forward control. The metamaterial is constructed
with piezoelectric elements mounted on a beam and controlled
by nonlocal electrical circuits. The nonlocal interaction is
considered into an effective complex bending stiffness which is
related to the wave propagation direction, transfer function and
nonlocal order. The proposed nonlocal micropolar metabeam
supports nonreciprocal flexural wave amplification and atten-
uation and bulk localized edge modes due to their non-
Hermiticity. We also experimentally show the resulting uni-
directional amplification/attenuation of waves propagating
through the metambeam. To gain intuition into the mechanisms
of the metabeam, analytical modeling including continuum and

discrete representations are used. The nonlocal metabeam is
also employed to engineer the anomalous wave dispersion such
as tunable roton-like dispersion. Its reciprocity can be easily
maintained or broken through electrically programmable
transfer functions. The tunable nonlocal micropolar metabeam
with programmable feed-forward control could provide a
platform for the investigation of topological phases of non-
Hermitian systems.

Design of the nonlocal
micropolar metabeam

We start with the design of the nonlocal micropolar met-
abeam. The proposed structure consists of an aluminum
host beam and an array of piezoelectric patches (PZT-5A)
on top and bottom of the host beam [see Figures 1(a) and
(b)]. The host beam is 5 mmwide and 3 mm thick. It is made
of aluminum (ρb = 2700 kg/m3, Gb = 26 GPa, Eb =
69 GPa). All the piezoelectric patches mounted on the beam
are PZT-5A (ρp = 7600 kg=m3, εT33 ¼ 1900ε0, d31 =�1.75 ×
10�10C/N, d33 = 4 × 10�10C/N, d15 = 5.9 × 10�10C/N) with
a thickness of 0.64 mm, a side length of 6.4 mm and a width
of 4.9 mm. The motion of the host beam can be charac-
terized by two independent degrees of freedom: the flexural
displacement w (x) of the midplane and the rotation angle f
(x) of the cross section with respect to the vertical axis [see
Figure 1(c)]. Each PZT patch pair performs as a sensor-
actuator feed-forward loop. The actuating patches apply
elongation or contraction to the top surface of the host beam,
depending on the applied voltage. Conversely, the sensing
patches extract voltages from the elongation and contraction
of the bottom surface. The nonlocal interaction is realized
by connecting the (n + a) th sensor to the nth actuator
through an electronic microcontroller with a transfer
function H, where a is the nonlocal order and satisfies
a ≥1 for non-vanishing nonlocality [see Figure 1(c)]. As a
result, the n th actuator exerts an external bending moment
which is proportional to the bending deformation ∂xf(x +
δx) at the (n + a) th unit cell. We will demonstrate that the
frequency bands of the metabeam are complex with non-
Hermiticity leading to the presence of energetic gain and
loss in opposite propagation directions. Such behavior is
also tunable due to the programmability of H, which can be
exploited to establish multiple frequency bands with in-
terchanging nonreciprocal behavior.

Nonlocal micropolar elasticity

The equations of motion for a freestanding nonlocal mi-
cropolar beam, shown in Figure 1, are expressed as:

ρ €w ¼ ∂xσzx, (1)
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I €f ¼ ∂xM þ Q, (2)

where ρ and I are the mass density and cross-sectional
moment of inertia, respectively, and Q and M are the shear
force and bending moment, respectively. In particular, Q
and M at x are obtained through the general constitutive
relations reading,where μ and B are the shear and bending
moduli of the piezoelectric metabeam without active con-
trol. Cb and Cs are the off-diagonal micropolar moduli, the

feedback “(p)” represents the moduli induced by H(ω), and
the shear deformation s(x) and the bending curvature b(x)
read, respectively

sðxÞ ¼ ∂xwðxÞ � fðxÞ (4)

bðxÞ ¼ ∂xfðxÞ: (5)

The local stress state possesses two components: the
local contribution from the host beam with piezoelectric
patches and the nonlocal contribution produced by

H(ω). For a passive beam system (H(ω) = 0), the off-
diagonal coupling elastic moduli are zero by taking the
cross-sectional local axes collinear with the principal
axes of inertia and centered at the center of mass.
However, this condition may not hold for active beams
where the energy conservation is broken. Coupling
between shear and bending can be activated through
applied active forces or deformation.25 Therefore, for
general beam media including active and passive ele-
ments, we should assume the linear constitutive relation
includes nonzero off-diagonal coupling elastic moduli
Cb(ω) and Cs(ω). Due to the arrangement of sensor-
actuator pairs in this work, the nonlocal shear barely
contributes to the local shear and bending, nor does the
nonlocal bending to the local one, implying
μðPÞ ¼ CðPÞ

s ¼ CðPÞ
b ≈ 0. Under harmonic assumption (ω,

k), equation (3) becomes

�
QðωÞ
MðωÞ

�
¼

�
μðωÞ CbðωÞ
CsðωÞ Bef f ðωÞ

��
sðωÞ
bðωÞ

�
¼ CðωÞ

�
sðωÞ
bðωÞ

�
,

(6)

where Cb, Cs ≈ 0 at low frequencies, Beff = B + Peikδx is
the effective bending modulus, and p represents the
nonlocal bending contribution B(p). For simplicity,
we use a homogeneous beam model to approximate the
actual piezoelectric-based metabeam considering
the small geometry of the piezoelectric patches
under the relative low-frequency. Typically, the
constitutive tensors C(ω) of the metabeam can be
determined by using micromechanical approaches,
which are dependent on the operating frequency in
general, 25 as will be discussed later.

Nonlocal micropolar elastodynamics

Considering C is frequency independent at the quasistatic
limit, we revisit the linearized continuum equations given in
equations (1) and (2), where under the harmonic assumption
of ei(kx�ωt) and an instant control (δt = 0), the strain-stress
relations read.

�
Q
M

�
¼

�
μ 0
0 Bþ Pðcoskδxþ isinkδxÞ

��
s
b

�
: (7)

Figure 1. Design and mechanics of a nonlocal micropolar
metabeam. (a) A photograph of the proposed nonlocal
micropolar metabeam with a programmable electronic
microcontroller system in the foreground. (b) An illustration of
the full nonlocal metabeam is shown in the top panel. The
bottom panel shows the schematic of a segment of the metabeam.
The sensors and actuators are connected nonlocally by the
transfer function H. The illustrated example here corresponds
to a nearest-neighbor nonlocal configuration (a = 1). The lattice
constant is L = 10 mm. (c) Schematic illustration of the mechanics
of the nonlocal micropolar metabeam. The (n + a)th sensor is
connected to the nth actuator through H in a periodic way.

�
QðxÞ
MðxÞ

�
¼

�
μðωÞCbðωÞCsðωÞBðωÞ

��
sðxÞbðxÞ

�
local

þ
"
μðPÞðωÞCðPÞ

b ðωÞCðPÞ
s ðωÞBðPÞðωÞ

#�
sðxþ δxÞbðxþ δxÞ

�
nonlocal

(3)
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Combining equations (1), (2), and (7) we obtain the
dispersion relation of the nonlocal metabeam as,

ω4 �
�
μ
I
þ k2

�
μ
ρ
þ Bef f

I

��
ω2 þ Bef fμ

Iρ
k4 ¼ 0: (8)

The above dispersion equation is complex-valued for the
presence of the complex-valued nonlocal bending modulus.
At a specific wave number k, we can solve for the complex
ω. For the nonlocal metabeam, we conduct numerical
simulations for a unit cell using COMSOL to determine all
the moduli of C which are found approximately frequency
independent at small |k|. Note that all the simulations in-
cluded in this work involve full beam systems with PZT
patches and nonlocal feed-forward control. We also use
multiple mesh elements along the beam thickness, with
quadratic serendipity discretization, to effectively avoid the
possible shear locking issues in numerical simulations. By
selecting properly prescribed strain boundaries and mea-
suring the reaction forces, we empirically find the system
parameters Beff = 8.24 × 104 kgm2/s2 and μ = 5.612 ×
109 kg/s2. The feedback coefficient p(ω) is approximated to
be p(ω) = ΓH(ω) with Γ = 7.5 × 102 kgm2/s2. The nor-
malized effective mass density and moment of inertia are
computed to be ρ = 4.776 × 103 kg/m3 and I = 3.2 ×
10�3 kgm.

A discrete representation of the nonlocal
micropolar metabeam

It is also intuitive to discretize the continuous nonlocal
micropolar metabeam into a discrete model.25 Here, we
consider a 1D lattice whose unit cell consists of a rigid mass,
a Hookean spring and a torsional spring; see Figures 2(a)
and (b). The vertical position and orientation of the n th rigid
mass are represented by wn and fn, respectively; also see
Figure 2(b). The Hookean spring connected to the nth mass
causes a tension force,

Tn ¼ kμðwn�1 � wn þ Lfn�1Þ (9)

With kμ = μ/L, while the torsional spring exerts a bending
moment,

τn ¼ kBðfn�1 � fnÞ (10)

With kB = B/L. Since the metabeam is modulated by a
nonlocal feed-forward control loop, an additional bending
moment τactn is added on the (n� a) th unit cell, meaning that

τactn ¼ pðfn�1 � fnÞ, (11)

where p = PeikaL/L. In this design, the considered uniform
distribution of bending moment does not necessarily cause
shear force. Therefore, considering the equilibrium condi-
tions within each unit cell, we obtain:

m€ωn ¼ Tn � Tn�1, (12)

J €fn ¼ τn � τnþ1 þ τactn � τactnþ1 � LTnþ1, (13)

where m = ρL and J = IL. Combining all expressions above
leads to,

m€ωn ¼ kμðwn�1 � 2wn þ wnþ1Þ þ Lkμðfn�1 � fnÞ, (14)

J €fn ¼ ðkB þ pÞ�fn�1 � 2fn þ fnþ1

�
,

þ Lkμðwnþ1 � wnÞ � L2kμfn,
(15)

Note that the discrete model of the metabeam is nothing
but a finite-difference version of equations (1) and (2) and
should work well within the quasistatic region.

Nonreciprocity and energy cycles

We first examine the complex dispersion engineering of the
nonlocal metabeam. Equation (8) admits four solutions with
two of them being the evanescent modes and the other two
the propagating ones. We plot analytically the lowest

Figure 2. Discrete spring-mass representation of the nonlocal micropolar metabeam. (a) The discrete model consists of a central mass
m with moment of inertial J, a Hookean spring kμ, and a torsional spring kB. The feedback from n th to the (n � a) th unit cells is
represented by p. (b) Schematic of the deformation of the n th lattice unit cell with wn and fn denoting as its flexural displacement and
rotation angle, respectively.
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complex band structure in the irreducible zone (IRZ) for
a = 1 (1st-order nonlocality) and p = 1.384 × 104 kgm2/s2
(H = 20) in Figure 3(a) (see the solid curves). The real part
of the band structureRðωÞ is symmetric with respect to k =
0, while its imaginary component IðωÞ is antisymmetric,
meaning that the amplification and attenuation of the
flexural wave propagation are nonreciprocal in the x di-
rection: flexural waves propagating in� x and + x undergo
amplification and attenuation, respectively. Numerical
eigenfrequency analysis confirms this theoretical predic-
tion, in spite of some discrepancies at higher frequencies
due to the fact that equation (8) works properly only for
small |k|. In addition, the dispersion given by the discrete
model (equations (14) and (15)) is also in good agreement
with both numerical and analytical results at small |k|. The
nonlocal order plays an important role in controlling the
number of nonreciprocal amplification/attenuation re-
gimes. As shown in Figure 3(b), 2nd- and 3rd-order non-
localities, corresponding to the a = 2 and a = 3 scenarios,
generate two and three nonreciprocal amplification/
attenuation regimes along a certain propagation direc-
tion, respectively. The difference from the first-order

nonlocality a = 1 is that waves now can be either am-
plified or attenuated in one direction, depending on the
operating frequency (or wave number). The a = 2 and a =
3 configurations provide frequency-dependent wave
transmission patterns along one propagation direction. For
instance, one can realize wave attenuation at lower fre-
quencies and wave amplification at higher frequencies
along the positive wave number direction with a = 2, which
could be potentially utilized as one additional degree of
freedom for one-way flexural wave control in practical
applications.

For better understanding the wave nonreciprocity,
energy cycles are also studied for the metabeam. Here,
we assume P ¼ jPjeiΦP . Then, the local strain and
nonlocal bending can be qualitatively expressed, re-
spectively, as:

∂xf} e�iωt, (16)

ΔM } jPjeiΦPeikδxe�iωt, (17)

Then, we obtain the work done by the nonlocal bending.

Figure 3. Complex dispersion engineering for nonreciprocal amplification and attenuation. (a) Complex dispersion for 1st-order
nonlocal configuration. The solid curves are analytical results from the continuum theory. The symbols represent the numerical results
from a fully coupled Finite-element software (COMSOL Multiphysics). The inset shows two representative scenarios featuring the
nonreciprocity for the opposite propagation directions at 30 kHz. (b) Imaginary dispersion band for the 1st-, 2nd-, and 3rd-order
nonlocalities. (c) Work done by nonlocal bending, ΔW, with jPjeiΦP and δx = aL. Four situations are shown with different (ΦP, a). The
signs “+” and “� ” correspond to the positive and negative ΔW. In particular, four representative states are selected. (d) Trajectories of
the selected four states in the RðΔWÞ - Rð∂xΦÞ space with |b| = |p| = 1. The particle direction indicates the evolution from one end of
IRZ to the other.
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ΔW ¼ R

(Z T

0

iω

�
s

b

�†� 0 0

0 P

��
s

b

�
dt

)

¼ 2πjbj2jPjsinðΦP þ kδxÞ,
(18)

where T = 2π/ω denotes the period. With non-vanishing
nonlocality, i.e. δx = aL ≠ 0, ΔW > 0 whenΦP + kδx 2 (0, π).
This physically means that the nonlocal bending ΔM does
positive work, corresponding to a process where electrical
energy is converted into the mechanical one. During this
process, the flexural propagation experiences amplification.
By contrast, ΔW < 0 holds when ΦP + kδx 2 (π, 2π), in-
dicating that ΔM now delivers negative work and features
the attenuation behavior of the flexural propagation since
mechanical energy is now converted into the electrical one.
In the top panel of Figure 3(c), we schematically show the
k-dependent ΔM for ΦP = 0 and π for a 1st-order nonlocal
beam, which corresponds to positive and negative P. When
ΦP = 0, a negative k (left propagation) experiences positive
work done by the nonlocal bending, indicating amplifica-
tion. As for a positive k (right propagation), the flexural
waves are attenuated. This gives exactly a physical inter-
pretation of the nonreciprocity in the metabeam system. A
sign flip of p will flip the direction of the nonreciprocity.
Alternatively, the sign of ΔW can also be visually deter-
mined by the trajectories of the strain-stress curves within
one period in a RðΔW Þ - Rð∂xΦÞ plot; see Figure 3(d).
Moreover, the bottom panel of Figure 3(c) illustrate the
distribution of ΔW for higher-order nonlocalities with ΦP =
0 or positive P. Sgn(ΔW) can well predict the nonreciprocal
attenuation/amplification bands when compared to the re-
sults shown in Figure 2(b). Note that a local control (δx =
aL = 0) can also do nonzero work, namely ΔW ≠ 0.
However, this ΔW causes neither amplification nor atten-
uation, but either a hardening or softening of metabeam for
both directions.

Non-Hermitian skin effect

The nonreciprocal behavior can also be determined by
inverse decay length κ, which can be analytically ob-
tained by solving equation (8) for k = q + iκ with purely
real ω, where the positive q is the propagation constant.
From Figure 4(a), it can be found that p > 0 leads to a
negative κ, corresponding to the attenuation behavior,
whereas p <0 results in a positive κ, corresponding to the
amplification behavior. For comparison, we also obtain
the numerical inverse decay length by conducting
frequency-domain simulations using a finite metabeam
including 60 unit cells. We emphasize that the flexural
nonreciprocity of the metabeam can also be related to a
non-Hermitian skin effect. For a complex frequency ω,
the following topological index ν, the winding number of
a dispersion band, can be defined as:

νðωÞ ¼ 1

2πi
Σα

I π=L

�π=L

d

dk
log½ωαðkÞ � ω�dk, (19)

In which ωα(k) denotes the frequency of the α band (in
this work it is the lowest flexural band). From a geometrical
standpoint, ν(ω) counts the number of times the loops of a
dispersion band over the IRZ encircles the selected fre-
quency. Its sign is dependent of the handedness of the loops:
ν(ω) > 0 if the rotation about the selected frequency is
clockwise; ν(ω) < 0 otherwise. A non-zero |ν(ω)| features
the existence of localized bulk eigenmodes, while sgn
(ν(ω)) determines which side the eigenmodes are localized
on. In Figures 4(b) and (c), we plot the dispersion loops for
p < 0 and p > 0, respectively. Comparison between the
simulations and continuum theory is illustrated as well to
show their good agreement for small |k|. In the two cases,
one can find ν(ω) =�1 and ν(ω) = 1. Eigenmodes encircled
by the ν(ω) =�1 loop are localized on the right boundary of
the metabeam, whereas ν(ω) = 1 leads to localized eigen-
modes on the left boundary; see also the confirmation given
by Figure 4(d) from numerical eigenfrequency analysis.

Band tilting

The transfer function H can also involve nonzero phase dif-
ference, i.e. arg(H) ≠ 0. When arg(H) = ± π/2, H becomes
purely imaginary. Then, from equation (7), it can be seen that
the effective bending stiffness RðBef f Þ becomes direction
dependent. In particular, its imaginary part vanishes only at
kL = π/2. Similar to the nonlocal metabeam here, the reported
odd-elasticity local platformwith imaginary-valued control can
also exhibit directional bending stiffness, but without ampli-
fication or attenuation across the entire IRZ, thus supporting
free wave propagation. Figure 5(a) showsRðωÞ is asymmetric
when H = 40i or equivalently p = 5.1i × 104 kgm2/s2. This
means that the left- and right-going waves exhibit different
group velocities, showing band tilting phenomenon. It is also
seen that the numerical and analytical results match well at
small |k|. To further examine the band tilting, we conduct
harmonic simulations for incidence from both directions at
9.211 kHz, and the computed phase distributions of the flexural
waves (arg(w) = 1i × log[w/|w|]) are illustrated in Figure 5(b).
The band tilting effect is numerically observed from the
wavelength difference.

Experimental demonstration

We fabricated a finite nonlocal metabeam consisting of 10 unit
cells (a total length of Lt = 100mm) and 9 active nonlocal feed-
forward loops on a 6-foot-long aluminum host beam, as shown
in Figure 6(a). The incidences from both sides are excited by
twoPZT-5A transducers connected to an amplifier and arbitrary
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function generator (AFG). The measurement and post-
processing are implemented by a commercial laser vibr-
ometer (PSV-400). The excitation is a 10-cycle tone burst signal
centered at 20 kHz. The transfer function, which is realized by
the circuits shown in Figure 6(b), reads

HðωÞ ¼ H0

ðiω=ω0Þ2 þ 2ηðiω=ω0Þ þ 1
, (20)

where the cutoff frequency ω0 = 2π × 33.53 kHz, the
damping coefficient η = 0.41 and H0 = �22.5. The ex-
perimental specifications are listed as follows: R1 = 1 MV,
R2 = 1.5 kV, R3 = 6.8 kV, R6 = 1 kV, R7 = 22 kV, C1 =
1 nF, C2 = 4.7 nF, C3 = 0.47 nF, and Op-amp OPA445. This
transfer function is plotted in Figure 6(c). Note that we use a
second-order low-pass filter in the experiments since it helps
stabilize the experiments by filtering out high-frequency

Figure 4. Non-Hermitian skin effect. (a) Calculation of the inverse decay length κ using COMSOL frequency-domain simulations
(dotted) and analytical approach (solid) when p > 0 and p < 0. (b, c) The complex dispersion bands are displayed for (b) p < 0 and (c)
p > 0. The winding number of each scenario ν is indicated. Comparison between the numerical simulations and continuum theory is
shown. For both scenarios, two representative modes encircled by the two loops are selected. (d) The corresponding field distributions
of the two selected modes feature the amplification and suppression of flexural waves.

Figure 5. Band tilt induced by nonlocality. (a) The real spectrum for H = 40i is shown accompanied by the comparison between the
reference in absence of active loops (black dotted), eigenfrequency simulation (red solid) and the continuum theory by equation (7)
(blue dashed). (b) Phase distributions of the right- and left-going flexural waves through the metabeam section at 9.211 kHz. The phase is
defined as arg(w) = 1i × log[w/|w|]. Only the phase changes within the host beam are illustrated.
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noise which is experimentally inevitable. This filter leads to
the complex frequency-dependent transfer function given in
equation (20). It is essential to point out that the experi-
mental testing with such a transfer function H(ω) corre-
sponds simply to the combination of the discussed scenarios
with purely real (Figures 3(a) and 3(b)) and purely imag-
inary (Figure 5) transfer functions. While the frequency
dependence of H(ω) simply leads to frequency-dependent
nonreciprocal amplification and attenuation rates and band
tilting. Specifically, the nonzero imaginary component of
the transfer function, IðHðωÞÞ leads to asymmetric com-
plex dispersion (Figure 6(d)), due to the band tilting. The
dispersion asymmetry further results in the difference in
positive/negative damping along opposite directions.
Figure 6(d) shows that the right-going flexural waves ini-
tially experience amplification due to negative imaginary
frequency below about 24 kHz. Above this frequency, at-
tenuation is expected. On the contrary, the left-going waves
are attenuated across the frequency range of interest, simply
due to the imaginary frequency being always positive.

For experimental validation, we use two piezoelectric
(PZT-5A) actuators, each for one side, to excite flexural
incidence from both sides. The probed vibration dynamics
along the opposite directions at 20 kHz confirms the

nonreciprocity, as shown in Figures 6(e) and (f). The
magnitude of the left-incident wave at 20 kHz is amplified
roughly by 232%, whereas that of the right-incident wave is
suppressed by about 40%. The results suggest that despite
the asymmetry in the complex dispersion, the nonreciprocal
wave amplification and attenuation can still be observed for
flexural waves, but at unbalanced amplification and atten-
uation rates in general along the opposite directions. Note
that the current system cannot directly measure the rotating
degrees of the structure. However, according to the mi-
cropolar (Timoshenko) beam theory, the measured bending
moment can be measured and is proportional to the second
derivative of the rotating angle.

To examine the inverse decay length of the metabeam,
we plot the comparison between experiments and numerical
simulations using κ ¼ ± lnðvmaxnormÞ=Lt for both left- and
right-incident waves in Figure 6(g), where vmaxnorm is the
maximum magnitude of the normalized velocity wave field.
Good agreement can be found between the experiments and
the numerical simulations that carry the same transfer
function as the one in the experiments. A value of
κ > 0 implies amplification of the right-going waves with
positive k. On the contrary, A value of κ > 0 implies at-
tenuation of the left-going waves with negative k. A closer

Figure 6. Experimental demonstration of nonreciprocity. (a) Schematic of the experimental setup including a 1st-order nonlocal
metabeam of 10 unit cells modulated by 9 active loops. (b) The schematic of the electrical control circuit system and the circuit
diagrams of individual components. (c) Complex experimental transfer function given in equation (20). (d) Complex dispersion diagram
for the experimental transfer function in (c). (e, f) Measured transient velocity wave signal at the output for both incident directions. The
red and blue curves represent the left and right incidences, respectively, while the gray ones are reference signals when the active
control is turned off. The results with active control are normalized the maximum of the respective references. (g) Comparison of the
inverse decay length κ between the experiments (symbols) and numerical transient analyses (solid) with the same transfer function as in
the experiments. The left/right incidence corresponds to the right/left-going wave.
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observation of the calculated κ reveals that the nonrecip-
rocal amplification does not always take place within the
entire spectrum. Above 23.5 kHz, both left- and right-going
waves undergo suppression. This has been explained pre-
viously in Figure 6(d) by the choice of the low-pass filter
which causes band tilts of the complex dispersion by
the nonzero IðHðωÞÞ. Nevertheless, the nonreciprocity of
the nonlocal metabeam is evidently validated by the ex-
periments. Similar observations are also available with
higher-order nonreciprocity. Specifically, more than
one nonreciprocal amplification band regions will be
found.22

Nonreciprocal roton-like dispersion

Roton dispersion relations initially found in correlated
quantum systems at low temperatures were recently de-
veloped and investigated in mechanical and acoustic sys-
tems. One of the prominent features is multiple eigenmodes
supported at a single frequency, featuring net negative
energy flows which are analogous to the so-called “return
flow.”Up to now, there have been mainly two approaches to
achieving the roton-like mechanical and acoustic bands:
chiral26 and nonlocal interactions.27,28 Here, we emphasize
that with the nonlocal metabeam design, both reciprocal and

Figure 7. Reciprocal and nonreciprocal roton-like dispersion. (a) Schematic illustration of the nonlocal realization of the roton-like
dispersion with a toggle between reciprocity and nonreciprocity. (b–d) Reciprocal roton-like dispersion relations enabled byH1 =H2 =
H or equivalently P1 = P2 = P. The change of theRðωÞ band is shown when (b) H = 20, (c) H = 23.5, and (d) H = 24. The black and red
curves represent the eigenfrequency simulation and continuum theory. The color fills are the FFT results. (e) Nonreciprocal roton-like
dispersion relations enabled byH1 = 26 andH2 = 23. Comparison of the complex spectra between simulation and continuum theory is
shown. (f) The normalized FFT-based intensity spectrum for the propagation of two opposite directions within the nonreciprocal roton-
like configuration at 2 kHz.
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nonreciprocal roton-like dispersion relations can be ob-
served with the help of extra nonlocal degree of freedom.

Figure 7(a) schematically illustrates the functional unit
capable of achieving both reciprocal and nonreciprocal
roton-like behaviors. Instead of having a single nonlocal
feed-forward loop, the design now involves two loops (P1

and P2) with the opposite nonlocal orders, leading to:

Bef f ¼ Bþ P1e
ikδx þ P2e

�ikδx, (21)

The idea of using two loops is to accommodate a toggle
function between roton-like reciprocity and nonreciprocity.
In Figures 7(b) to (d), the formation of the reciprocal roton-
like dispersion is first demonstrated in a 2nd-order nonlocal
configuration (a = 2), with P1 = P2 = P. Good agreement
between numerical and analytical analyses validates the
theoretical model in the continuum region. The roton-like
dispersion appears when H exceeds about 20. Once it
reaches roughly 23.8, the band touches ω = 0 at a critical
point at kL = 0.5π, because Beff reaches zero; see equation
(8). Within this range, only one roton minimum survives
and three eigenmodes exist at a single frequency, with one
of them exhibiting negative group velocity vg. Continuing
increasing H eventually induces a vertical bandgap within
which flexural propagation at certain k is forbidden. This
can also be interpreted as the emergence of negative ef-
fective bending stiffness across the certain range of k,
similar to the conventional scenarios where single or double
negative constitutive parameters take place in certain fre-
quency ranges. Note that the numerically determined p is no
longer in linear relation with H due to the double feed-
forward controls and the value selection of H, vastly dif-
ferent from what we have seen in the previous sections.
Overall, the roton-like behavior presented here shows
similarity with those reported in three-dimensional me-
chanical metamaterials, since the nonlocal feedback control
discussed here is equivalent to a reciprocal next-nearest-
neighbor interaction. The fundamental difference lies in the
realization of the nonlocal interactions: the design senses the
nonlocal strain fields whereas the existing studies utilize
passive reciprocal on-site interactions. Moreover, similar to
those passive designs, 27 increasing the nonlocal order will
also increase the number of roton minimums.

What is more compelling is that the nonlocal metabeam
is also capable of realizing nonreciprocal roton-like dis-
persion, or in other words, a roton-like behavior with
unidirectional amplification/attenuation, which has not been
reported yet. To achieve it, two unbalanced transfer func-
tionsH1 ≠ H2 are required. As shown in Figure 7(e), we plot
the complex spectra for H1 = 26 and H2 = 23 using both
numerical modeling and continuum theory given by
equation (7). We confirm this novel behavior by examining
the wave number dependent intensity difference between

the two opposite directions at 2 kHz, as displayed by
Figure 7(f); also see the inset of Figure 7(f), where a fast
Fourier transform (FFT) is adopted on the spatial flexural
displacements collected in an 81-unit-long metabeam for
both directions. Specifically, the magnitude of the first
positive-vg mode is enhanced in + x due to the negative
IðωÞ. On the contrary, the second positive-vg mode and the
negative-vg one featuring “return flow” are amplified in� x.
This observation clearly verifies the validity of the nonre-
ciprocal roton-like mechanical behavior. Note that the
switch between the reciprocal and nonreciprocal configu-
rations can be done simply by adjusting the nonlocal feed-
forward control loops, possessing potential tunability.

Conclusion

We study the active metabeam enabled by nonlocal feed-
forward control, providing a physical realization of the
nonlocal micropolar elastic media. Both the continuum and
discrete models are provided to characterize the complex
band structure under the continuum limit. The nonreciprocal
flexural wave amplification and attenuation are numerically
demonstrated and also experimentally validated. This odd
wave propagation behavior is attributed to the work done by
the nonlocal bending, which is described as the exchange
between mechanical energy and external electrical power.
The non-Hermitian skin effect of the finite system is
demonstrated and interpreted by the topology of the
complex dispersion band. In addition, implementing a
purely imaginary transfer function leads to the band tilting
of the real spectrum. Lastly, by increasing the nonlocal
degree of freedom, the roton-like mechanical dispersion
with tunable options between reiciprocity and non-
reciprocity is numerically verified. The nonlocal metabeam
could serve as a power platform for engineering different
topological wave dispersions and investigating various
types of wave dynamics under the framework of non-
Hermitian system.
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